
SDXL REFERENCE

MANUAL

Sample Distributions
for Excel Simulation

and Modeling

Version 1.0 .2

John Marc Thibault

SDXL Reference Manual

Sample Distributions for Excel Simulation and
Modeling

January 2013

Copyright © 2012 ,2013 John Marc Thibault. All
Rights Reserved.

Version 1.0 .2

Print Edition by CreateSpace

ISBN -13: 978 -1479199976

ISBN -10: 1479199974

Excel is a trademark of Microsoft Corporation,

DIST is a trademark of Vector Economics Inc.

CONTENTS

iii

Introduction 7

Somewhat Object -Oriented Excel 9

Whatõs a Sample Distribution? 11

Simulation with SIPs 15

XML Strings 17
1 Type Float 17
2 Type Integer 18

Implementation Notes 20
3 SIP Conformance 20
4 SIPs in Function Arguments 20
5 Column Arrays 20
6 Psuedo-Random Numbers 21
7 Fuzz 21
8 DIST strings 21

SmpDst: Sample Distributions 22
9 toVal ð Convert a SIP to a column array 22
10 sdSample ð Get a sample 22
11 getSt ats ð Statistical properties as a collection 22
12 statProps ð Statistical properties as an array 23
13 fromPxV ð Convert probab ility.value pairs 23
14 fromWxV ð Convert weight.value pairs 24

SmpXml: XML Strings 25
15 isXML ð check for smpdst string 25
16 fromXML ð XML string to colArray 25
17 toXml ð Encode a SIP 25

SmpCsv: CSV 27
18 isCSV ð check for CSV formatted string 27
19 toCSV ð format as CSV string 27
20 fromCSV ð CSV string to ColArray 27

Canvas: Low -level Graphics Object 28
21 .setup ð create blank chart 29
22 .toBack, .toFront ð Change Z -order 29
23 .myShape s ð get Shapes reference 29
24 .clear ð Clear chart contents 30
25 .transparent ð Make chart see -through 30
26 .noBorder ð Remove border 30
27 .stroke ð Line weight 30
28 .lineRGB ð Line colou r 30
29 .fillRGB ð Fill colour 31

CONTENTS

iv

30 .textSize ð Text font size 31
31 .textRGB ð Text colour 31
32 .drawLine ð Draw a line 31
33 .drawPoly ð Draw polyline 32
34 .drawCircle ð Draw a circle 32
35 .wrapText ð Text in a word -wrapped box 32
36 .centerText ð Center text in box 33

SmpSIP: SIP Object 34
37 .SIP= ð Initialize SmpSIP object 35
38 =.SIP ð get SIP from SmpSIP object 35
39 .prettyPlot ð setup chart plot data 35
40 .plotParams ð setup chart plot data 35

phChart: SIP Chart Object 36
41 .Setup ð define the chart space 36
42 .draw ð draw the SIP chart 37
43 .update ð update the SIP chart 37
44 .plotParameters ð Setup the plot data 37
45 .drawGrid ð Plot the grid lines only 37
46 .drawHist ð Plot the SIP only 37

SmpSIPchart: Chart Presentation 38
47 sdDrawSip ð Draw a SIP Chart 38

SmpSparkScat: Sparkline Scatter Plot 40
48 sdSparkScat ð Draw a sparkline Scatterplot 40

SmpChart: Plotting 41
49 ppChart ð Percentile curves 41
50 pmChart, ppmChart ð Percentile with marker lines 42
51 hg#Chart ðhistogram 43
52 yChart ð Simple vector plot 44
53 scatChart ð Scatter Plot 45
54 GetPlotData ð Get the data to build a chart 46

SmpMath: Array Math 48
55 Array Math with SIPs 48
56 Array Comparison 49
57 sdIIf ð Conditional Value 49
58 sdEval ð Excel Function on SIPs 50

SmpOrd: Order Management 51
59 RankOrder ð Rank Order of an array 51
60 SortIndex ð Sort order of an array 51
61 Permute ð permute an array 51
62 boolProb ð Boolean SIP 52
63 sequence ð index a range 52
64 countTo ð Count 1 to n 52

CONTENTS

v

65 sortToRank ð get rank or der from sort order 53
66 sdSort ð Sort Ascending 53
67 sdMatchRO ð Match Rank Order 53
68 sdCorrel ð Coefficient of Correlation 54
69 sdPercentRank ð PercentRank 54
70 sdPercentile ð Percenti le 54
71 sdMedian ð Median 54
72 sdRotate ð Rotate Samples 55
73 sdCat ð Concatenate SIPs 55
74 sdForceRo ð Force Rank Order 55
75 sdMerge ð Merge Dists 56
76 sdPtoX ð Probabilities to Indexes 56

SmpResize: SIP Sizing 57
77 sdResize ð Resize a SIP 57
78 sdResample ð Resample a SIP 58
79 sdReselect ð Resizing Selector Index 58

SmpRand: Random Numbers 60
80 rIndex ð Random index 60
81 rInt ð Random Integer Vector 60
82 rUnif ð Uniform Random SIP 60
83 shuffle ð Random Permutation 61
84 rSum ð Irwin -Hall Distr ibutions 61
85 rTriangle ð Triangular Distribution 61

Mersenne: Mersenne Twister 63
86 randomDouble ð Random Fraction 64
87 randomLong ð Random Integer 64
88 makeMersenne ð Set up a state vari able 64
89 nextMersenne ð Get the next random number 64
90 setMersenneDef ð Set the default state 64
91 mersenneRandomize ð reset default Mersenne state 65
92 mersenneInt ð One Mersenne Integer 65
93 mUnif ð Generate uniform random numbers 65
94 mIndex ð Generate a random permutation index 65

SmpU: Utilities 67
95 bounds ð bounds of an array 67
96 dims ðdimensions of an array 67
97 ndims ð number of dimensions 67
98 ceilL ð ceiling as Long 67
99 floorL ð floor as long 68
100 flatten ð force to one -dimensional array 68
101 getFormula ð get the formula from a cell 68
102 getTemp, putTemp ðTemporary Store 68
103 keyAttr ð get an attribute from a string 69
104 times ð repeated value 69
105 toColumn ð Force to column array 69
106 LtoD ð Long to Double* 69
107 Dto L ð Double or Decimal to Long* 69

CONTENTS

vi

SmpCar: Column Arrays 71
108 Functions of one array 71
109 Functions of two arrays 72
110 Boolean Functions 72
111 Boolean Conversions 73

LongStack Object 74
112 .count ð Number of elements on stack 74
113 .isEmpty ð Test for empty stack 74
114 .pull ð Take top element from stack 74
115 .push ð Put an element on top of stack. 75
116 .reset ð Set the stack size 75

SmpIO: File Transfers 76
117 fromFile ð Get XML from a file 76
118 toFile ð Write XML to a file 76

SmpRad64: Base64 encode/decode 77
119 R64encode ð Encode Base64 string 77
120 R64decode ð Decode Base64 string 78

New and Changed in Version 1.0 79

About the Author 80

Introduction

7

Introduction

When Dr. Sam Savage published The Flaw of
Averages , he started a number o f revolutions, each
in its own field. Wherever business decisions are

being made in the face of significant uncertainty,

someone is putting Dr. Savageõs prescriptions to
work fixing the bad math that is costing a lot of

people a lot of money. Portfolio man agement, oil

exploration, pharmaceutical research, pension

accounting and others are getting the Probability
Management treatment . A community has form ed

around Probability Management .org to promote the

tech niques and establish best practices .

The fact that youõre reading this suggests youõve

either read the book or got a sense of the problem

from other sources but, just in case, I õll be covering
some of the basics.

SDXL is a free as in speech, free as in be er, Excel

add -in focused on simulation and modeling the
probability management way. Itõs mostly about

creating and manipulating sample distribution

array s (SIPs), calculating with them, and putting

out results as graphs .

The code is MIT licensed, so you ca n do pretty

much what you want with it. I hope youõll send me

any improvements you make.

The whole package consists of:

sdxl.xlam The add -in .

sdxl Ref.pdf This document .

sdxlExercises.zip a bundle of Excel workbooks

exercising the SDXL functions.

You can g et it at smpro.ca/SDXL . Iõll be putting
updates and ôto-doõ lists in the Google+ SDXL

Community , and continuing to post related articles

http://flawofaverages.com/
http://flawofaverages.com/
http://probabilitymanagement.org/
https://plus.google.com/b/115311768552850309973/

John Marc Thibault

8

on my Art of the Plan blog at goodplan.ca . Feel free

to leave comments, suggestions and code.

If you want to get up close and personal with

project planning and estimating using Probability

Management and SDXL, get my e -book, The Art of
the Plan from Smashwords at goo.gl/kGvTo or
Amazon .

For Excel/VBA code, planning and estimating help ,

or probabil ity management advice , email or call
me.

Marc Thibault

613 -724 -9442
marc@smpro.ca

Skype: marc.thibault256

My web site is at smpro.ca .

Find me on G oogle+ Here.

http://goodplan.ca/
http://goo.gl/kGvTo
http://www.amazon.com/dp/B009FGZOHO
mailto:marc@smpro.ca
http://smpro.ca/
https://plus.google.com/110706710410245734955

Somewhat Object -Oriented Excel

9

Somewhat Object -Oriented Excel

One of the good thing s about Excel/VBA is that

VBA supports classes and object -oriented designs.

The bad thing is that the objects and methods

aren't accessible with worksheet cell formulas.

That means that if you define a class module, you
still need an ordinary module for th e functions that

will provide an interface between the spreadsheet

and the class.

There is a way around this, and here I have to give

credit to Sam Savage. One of the many useful ideas

he put forward in The Flaw of Averages was to take

advantage of the XML standard and pack large
arrays of numbers into an XML string per array .

These strings could go into spreadsheet cells, and

various functions would work with the arrays
through the XML.

Every object -oriented language has methods that

will turn object state into a string. It's usually
called serializing. Serialized objects traverse the

internet and in -house networks, moving objects

(more precisely their states) from place to place,
system to system. Their bodies stay in place but

their spirits trav el.

A litt le bit of O -O is possible in Excel using this

principle. Let's say we wanted to work with arrays
that could be manipulated in a workbook. Instead

of columns of numbers filling up worksheets, we

can use VBA's support for Comma -Separated
Value (CSV) strings with join() and split(). These

serialized arrays, array instances, can live in one

worksheet cell each as a CSV string.

Then all we need is a module with the 'methods'

that work on the CSV string 'objects'. The three

basic, and relatively obvious methods w ould be

boolean = isCSV(variant)

John Marc Thibault

10

string = toCSV(array)

array = fromCSV(string)

Then you'd add methods that do useful things, like
add two arrays. The cell formula to get the array

sum of two arrays might look like

=toCSV(csvAdd(B3, B4))

There are also som e things you can do directly with

Excel formulas, like getting the average of an array:

=AVERAGE(fromCSV(B4))

This is a simple application of the principle . SDXL
is loaded with functions to take advantage of it, not

just with CSV strings, but also a genera l-purpose

XML type .

Whatõs a Sample Distribution?

11

Whatõs a Sample Distribution?

How long will it take to complete this project task ?

There isnõt just one answer; thereõs a whole bunch
of answers ð each with its own probability of being

right or nearly right . Itõs an uncertain variable . A

sample distribution tells you about the range of
values the variable might take and how likely

various values are.

A sample distribution is a list of numbers, in most

cases lots of numbers ð hundreds or thousands of
them. Each item in the list holds wh at we believe is

a possible value of something wh ose actual value is

unknown . Itõs an abstraction of what Sam Savage
calls a SIP or Stochastic Information Package. A

SIP has a sample distribution . Calculating with

SIPs instead of single numbers is SIP Math .

Ideally, t o make a SIP we collect observed past

values of the thing weõre describing and put them

in a vector (array, matrix, list) and
calculate with that . We let the real

world data speak for itself. There are

some constraints on how we do this ,

so th at the SIP meets some basic
specifications, but that is essentially

it.

For simulating a project or process,
weõll create a software model that has a bunch of

uncertain variables as inputs. Each of the

variables will be represented by a SIP. The results
of the simulation , the output of the model, will also

be SIPs, quantifying the uncertainty in the results

thatõs caused by the uncertainty in the inputs .

The model will be the same as a conventional

model except instead of calculating it once with

one set of assumptions producing one number out,

we calculate with many combinations of input
assumption and produce many numbers ð a result

John Marc Thibault

12

SIP. This will provide a picture of the range of

possible outcomes and their probabilities.

The first simulation trial wi ll calculate using the

first element of each input SIP, and the result will

be recorded as the first element of the output SIP.

Successive trials will use the second and following
elements of the input SIPs to calculate su ccessive

elements of the output SIPs. Thatõs a long way of

saying weõll be using array math functions .

We want the trials to involve many different

combinations of input values , modeling the variety

of combinations weõd expect in the real world, so
we shuffle each of the input SIPs before using

them .

Array math functions give us the means to
calculate with SIPs in parallel , greatly simplifying

the model logic. Excelõs array formula feature

provides that capability ð with some important
limitations . SDXL provide s functions for operating

on SIPs without filling worksheets with columns of

numbers .

A sample distribution has two independent
attributes: its shape which is determined by the

sample values, and its order which is determined

by the sequence in which the values occur in the
sample vect or.

There are a bunch of things you can say about a

sample distribution's shape:

1 Each sample has a value and different
samples may have the same value.

2 Each sample has the same probability as

every other of holding the value closest to
the actual value.

3 The probability that the variable falls into a

particular value range is proportional to the
number of samples whose values fall into

that range.

Whatõs a Sample Distribution?

13

4 A sample distribution's shape is determined

by the sample values independent of their
order in the sample vector .

5 A sample distribution's shape is what

determines its conventional statistical
attributes, like mean and median.

Managing order is an important part of modeling

with sample distributions. Itõs how we prevent or

preserve correlation between variables. SDXL has a
bunch of functions (most in module SmpOrd) that

can modify a SIPõs order without affecting its

shape.

To present a SIP, displaying a huge table of

numbers is unacceptable, so we use graphs. The

most common graphs are histograms and
percentile chart s. This LRT Cost graphic combines

the two on a single chart. You can make one of

these with sdDrawSIP().

The histogram bars show the relative probabilities
of particular outcomes , exaggerated to make the

relative probabilities more apparent . The percenti le

curve shows the probability that the cost will be

John Marc Thibault

14

equal to or less than a particular value. The

percentile curve is the most useful for informing
decisions about resourcing and managing risk.

With SDXL we keep SIPs in one of four forms:

1 An XML string , which is the most flexible
and most compact form.

2 A CSV string. Faster than XML and you can

see the values.

3 A column array ð a VBA array with
dimensions (1 to n, 1 to 1) for a SIP with n

samples.

4 A range of cells.

Simulation with SIPs

15

Simulation with SIPs

Simulation with Probability Management is not

Monte Carlo Simulation. It is simpler, streamlined
and more intuitive. Also, Monte Carlo simulation is

usually aimed at finding the One True Value,

whereas we know it doesnõt exist and weõre happy
to quantify its uncertainty with a SIP and a lot of

possible outcomes .

Las Vegas Simulation

I like to call t he probability management way ôLas

Vegas Simulationõ.

The model calculations get done for all of the trials

in parallel, using whatever the underlying platform
has for doing th ings like ôadd each element of this

array to the corresponding element of that array .õ

Use these tools to build functional models of the
process youõre simulating. Build your model the

way you would do it with scalar variables , but put

SIPs where the sca lars would go and use the S DXL
functions like sdAdd() and sdMax() where you

John Marc Thibault

16

would otherwise use primitives like ô+õ and Excel

functions like MAX.

The general pattern for a formula in a cell is

=toXML(sdFun(Dist1, Dist2), ñsomeNameò)

=toXML Converts the result of the calculation to

an XML string in this cell.

sdFun Some SDXL function or expression ð

they all return arrays.

Dist1, Dist2 Two SIPs to be added,
multiplied, etc.

someName The name attribute of the resulting XML

is required .

The ôsdFunõ part can be any formula that produces

a SIP:

Add three distributions :

=toXml(sd Add(Dist3, Dist4, Dist2),

"AddEmAll")

Multiply a SIP by 4 :

=toXml(sd Mul(Dist1,4),"multiply by

scalar")

Milestone , use the latest of three converging

streams :

=toXml(sdMax(Dist1, Dist2, Dist3),"Max of

three")

XML Strings

17

XML Strings

SDXL supports an XML string format with two

general types : Float and Integer. They correspond
to extensions Iõve proposed for the next version of

the DIST format . The tag is <smpdst>. In this

format , t he number of bits encoded for each
sample is set by a bpw , bits -per -word , attribute

that can vary from 1 to 24. The more bits, the finer

the resolution the string can represent. The

smallest difference that will survive a round -trip
encoding and decoding is

Finally, ther eõs an about attribute and a units

attribute for adding descriptive narrative to the
SIP.

The count attribute rules. If there isnõt enough

data in the string, fromXML () will append sufficient
zeros to satisfy the count.

(If youõre familiar with object-orie nted lingo , think

of a particular SIP as an instance of the Sample

Distribution class, and the XML string as a
seria lization of the instance state.)

1 Type Float

The Float type is used to encode VBA Double and
Single numbers and the number of bits used to

encode each sample is adjustable.

Attributes

name A text string identifying the SIP,

usually unique.

John Marc Thibault

18

avg The average of the sample values

before theyõre encoded into the string .
Decode ignores it.

min The minimum sample value .

max The maximum sample v alue .

count The number of samples .

type The string òFloató.

bpw Bits per word: the number of bits used

to encode a sample. Will be between 1

and 24 inclusive.

about An arbitrary text string should

describe the SIP.

units A text string for the me asurement

units for the data.

origin An arbitrary text string should say

something about the SIPõs provenance .

ver The format version : ò0.2.0ó.

Format

<smpdst name="myName" avg="##" min="##"

max="##" count="##" type="Float" bpw="##"

units=ò$$ò about ="$$" origin="$$"

ver="$$"> Base64 Encoding </ smpdst >

2 Type Integer

The Integer type holds an integer vector of the type

used for a permutation index. The compression is

lossless and controlled by the bpw attribute.

XML Strings

19

Attributes

The attributes are the same as for Type Float
except the type a ttribute is the string òIntegeró.

Format

<smpdst name="myName" avg="##" min="##"

max="##" count="##" type="Integer"

bpw="##" about="$$" origin="$$" ver="$$">

Base64 Encoding </ smpdst >

John Marc Thibault

20

Implementation Notes

3 SIP Conform ance

For functions of more than one SIP, one
requirement is that all the SIPs have the same

number of samples . The SDXL functions generally

donõt require this to be the case. The first
argument sets the sample count for the

computation. For larger SIPs, the function will only

take as many samples as it needs . For smaller
SIPs, the iterator will wrap around and the SIP will

be repeated as often as is necessary to supply the

needed number of samples.

This behavior is intended to simplify initial model
buildi ng; itõs not good modeling practice. For

production, the SIPs should be properly resized to

be all the same size . The functions in the
SmpResize module can be used for this purpose.

4 SIPs in Function Arguments

The polymorphic function toVal () will do everyt hing
it can to interpret its argument as a SIP and return

a column array. It examines the argument, figures

out what it is, and calls the conversion function
specific to the argument type. The functions that

take a SIP as an argument will first pass the

argument through toVal ().

In the function descriptions, an argument labeled
dist and described as a distribution can be a n XML

string, a CSV string, a column array, a cell range,

or just about anything numeric.

5 Column Arrays

The basic form we use for SIPs, other than a string ,

is a column array. That is , an array with

Implementation Notes

21

dimensions (1 to n , 1 to 1), where n is the number

of samples. It can be used in VBA as an array and
in a worksheet as a columnar range of values .

6 Psuedo -Random Numbers

Wherever we refer to some thing as random,

pseudo -random is implied. The SmpRand
functions use the Mersenne Twister

implementation of randomLong() and

randomDouble() from module Mersenne. The
Mersenne Twister can be replaced by any other

PRNG; the only requirement is that the

repl acement must implement those two functions.

7 Fuzz

Smp Car defines a global variable Fuzz set at 0. If

the difference between two numbers is less than
Fuzz, the numbers are considered equal for

purposes of comparison. At this time, Fuzz is used

only for the a rray comparison functions (sdEq , et
al).

8 DIST strings

From Vector Economics: òPatented and patent

pending DIST Technology is owned by Vector
Economics ; those who would like to learn more

about licensing it should contact Vector

Economics. ó

SDXL doesnõt support the DIST format at this time .

Use SmpDst or CSV strings instead.

John Marc Thibault

22

SmpDst : Sample Distributions

Workbook: exDst.xlsm

9 toVal ð Convert a SIP to a column array

toVal(dist)

dist A distribution

Returns a variant column array doing everything it

can to inte rpret its argument as a SIP. The result

can be used as an array in VBA or a column array
formula in Excel.

10 sdSample ð Get a sample

sd Sample(dstr , n)

dist A SIP

n a number

Returns a sample value from the SIP.

If n = 0, it returns the average value .

If 0 < n < 1, it returns the nth percentile value.
If n >= 1, it returns the nth sample value.

11 getStats ð Statistical properties as a

collection

getStats(dist)

dist A SIP

Returns a collection with keys min, max, mean, sd,
sum, count.

SmpDst: Sample Distributions

23

12 statProps ð Statistical properties as an

array

{=statProps(dist)}

dist A SIP

Returns a (6,2) array with the statistical properties

of the argument . The first column has the names

of the properties, the second column has their
values. This can be used in an Excel array formula.

E.g.

Related Excel Functions

Percentile , PercentRank , SumProduct , AVERAGE,

MAX, MIN

13 fromPxV ð Convert probability.value
pairs

fromPxV(n, P, V)

n number of result samples

P array of probabilities

V array of values

Returns a column array with the SIP

corres ponding to the probability.value pairs

provided. This keeps the probabilities in the
frequency domain. It also provides the correct

resolution to the Risk = Probability * Impact

argument.

John Marc Thibault

24

The probabilities must add up to 1 for correct

results.

The result is deterministic, so shuffle or permute

before using.

14 fromWxV ð Convert weight.value pairs

fromPxV(n, W, V)

n number of result samples

W array of weights

V array of values

Returns a column array with the SIP
corresponding to the weight.value pairs provided .

Each W(i) will contribute W(i) samples with value

V(i). The result will be resized to n samples.

The result is deterministic, so shuffle or permute

before using.

SmpXml: XML Stri ngs

25

SmpXml : XML Strings

Workbook: exXml.xlsm

This module has the conversions between smpdst -
tagged XML strings and column arrays.

15 isXML ð check for smpdst string

isXML(xml s)

xmls a string

Return s TRUE if the string is a smpdst string

16 fromXML ð XML string to colArray

fromXML(xmls)

xmls a string

Returns a colArray from a smpdst -formatted
string.

17 toX ml ð Encode a SIP

toXML(dist, name, type, bpw, origin,

about, units)

dist A SIP.

name SmpDst name as a string.

type Optional. Element type: òFloató,

òIntegeró. Default is òFloat ó.

bpw Optional. Bits per word. The number of

bits to be used to encode each s ample.

Default is 14 , the maximum is 24.

origin Optional. A text string. Default is

òsmpro.caó.

about Optional. A text string. Default is òó.

John Marc Thibault

26

units Optional. The sample value units (e.g.

òfurlongs ó). Default is òó.

Returns an XML string. The data element i s taken

from the argument SIP. The XML attributes are

filled in from the rest of the arguments, if they are
provided. Missing arguments result in default

values.

XML delimiters (ò < >) are stripped out of text

attributes name, origin, about , units .

SmpCsv: CSV

27

SmpCsv : CSV

Workbook: exCSV.xlsm

18 isCSV ð check for CSV formatted string

isCSV(s)

s a string

Returns TRUE if the string is a CSV string.

19 toCSV ð format as CSV string

toCSV(dist, r)

dist a SIP

r Rounding factor; the number of digits

after the decimal point, same a s the

second argument for Round().

Return s a SIP formatted as a CSV string .

20 fromCSV ð CSV string to ColArray

fromCSV(s)

s a string

Returns a column array with the values from a
CSV string.

John Marc Thibault

28

Canvas: Low -level Graphics Object

Workbook: exCanvas.xlsm

The canva s object sets up a blank chart and
provides some functions for drawing on it. It

doesnõt need SDXL, so you can import the

canvas.cls file into your project and use it on its
own . (Actually you donõt have a choice; VBA

doesnõt let you work with classes across project

boundaries, so youõll have to drag any classes you
want from SDXL into your project.)

Canvas is used by phChart to do its thing.

There arenõt a lot of functions, so you may find new

things for it to do. If you do, please send me a
suggestion (or code) and Iõll add them to the next

rev.

All the drawing functions return a reference to the
Shape instance they create, so you can do things

from the Excel repertoire that arenõt included in

Canvas. Thatõs how I get the line to spin in the
exCanvas exer cise workbook.

Excel Graphic Object Model

Canvas: Low -level Graphics Object

29

Properties:

lastShape A reference to the most recently added
Shape instance

21 .setup ð create blank chart

.setup sheetId, chartId, tl Cell, w, h

sheetId Name of the sheet to draw on.

chartId Name to give the chart.

tlCell The cell whose top left corner will be the

top left corner of the chart.

w Width of the chart in points.

h Height of the chart in points.

dim tcan as new Canvas

tcan.setup ñShowò, ñTestò, ñB4ò, 200, 300

Prepare a chart named Test, 200 by 300 points in

size. The top left corner of the chart will be over cell
B4 on sheet Show .

If there is already a chart of that name on that

sheet, it is deleted and replaced by the new one.

22 .toBack, .toFront ð Change Z -order

If you are making multiple overlapping can vasses,

you can use toBack and toFront to adjust which
ones get drawn over or under which others.

Otherwise the most recently initialized will draw

over the earlier ones.

23 .myShapes ð get Shapes reference

Returns a reference to the Shapes collection

created by .setup. Use it to do things not included

in this module.

John Marc Thibault

30

24 .clear ð Clear chart contents

Deletes the contents of the chartõs Shapes
collection. Leaves the chart.

25 .transparent ð Make chart see -through

Makes the chart transparent so that anything
under the chart will be visible.

26 .noBorder ð Remove border

Removes the border from the chart frame.

27 .stroke ð Line weight

.stroke(w)

w Line thickness in points

Sets the line weight for shapes to be added to the

chart.

28 .lineRGB ð Line colour

.lineRGB r, g, b

r Red component (0 -255)

g Green component (0 -255)

b Blue component (0 -255)

Sets the line colour for shapes to be added to the

chart.

Canvas: Low -level Graphics Object

31

29 .fillRGB ð Fill colour

.fillRGB r, g, b

r Red component (0 -255)

g Green component (0 -255)

b Blue component (0 -255)

Sets the backgr ound colour for shapes to be added

to the chart.

30 .textSize ð Text font size

.textSize s

s Font size in points

Sets the font size for text to be added to the chart .

31 .textRGB ð Text colour

.textRGB r, g, b

r Red component (0 -255)

g Green component (0 -255)

b Blue component (0 -255)

Sets the color for text to be added to the chart.

32 .drawLine ð Draw a line

.drawLine x1, y1, x2, y2

set aShape = .drawLine(x1, y1, x2, y2)

x1, y1 Starting point

x2, y2 Ending Point

Draws a line using the current colour and stroke

specifications.

Returns a reference to the Shape instance created .

John Marc Thibault

32

33 .drawPoly ð Draw polyline

.drawPoly p

set aShape = .drawPoly(p)

p an array of points specifying the path of

the line to be drawn.

Draws a line through the specified points. The

array shape i s (n,2) where n is the number of
points. The two elements of each row are x and y

values respectively.

Returns a reference to the Shape instance created .

34 .drawCircle ð Draw a circle

.drawCircle x, y, r

set aShape = .drawCircle(x, y, r)

x, y Center of the circle in points

r radius of the circle

Draws a circle of radius r, centered at x,y.

Returns a reference to the Shape instance created.

35 .wrapText ð Text in a word -wrapped box

.wrapText t, x, y, w, h

set aShape = .wrapText(t, x, y, w, h)

t Text string t o be added to the chart

x, y Top left corner of the text box in points
relative to the top left corner of the

chart.

w, h Width and height of the box in points.

The text will be left -justified and word wrapped in

the box.

Returns a reference to the Shape instance created.

Canvas: Low -level Graphics Object

33

36 .centerText ð Center text in box

.centerText t, x, y, w, h

set aShape = .centerText(t, x, y, w, h)

t Text string to be added to the chart

x, y Top left corner of the text box in points

relative to the top left corner of the

chart.

w, h Width and height of the box in points.

The text will be centered in the box.

Returns a reference to the Shape instance created.

John Marc Thibault

34

SmpSIP: SIP Object

Workbook: exPhChart.xlsm

A general -purpose object that can hold a SIP and
do some statistics and plotting -rela ted things with

it.

Properties:

 SIP Statistics

sipMin minimum sample value.

sipMax maximum sample value.

sipCount number of samples.

sipSum sum of the sample values.

 Plot parameters

nbars number of histogram bars.

freq cumulative frequency colarray.

percs cumulative probability colarray.

hist histogram probabilities colarray.

hpnts histogram points colarray.

vMarks value -axis markers colarray ,

count = nbars+1

vMin value -axis minimum marker position.

vMax value -axis maximum marker position.

deltaV value -axis marker interval.

SmpSIP: SIP Object

35

37 .SIP = ð Initialize SmpSIP object

Dim pd As New SmpSIP

pd.SIP = toVal(dist)

pd Object reference.

dist A SIP.

Sets up an SmpSIP object, primes it with a SIP and

calculates the SIP statistics.

38 =.SIP ð get SIP from SmpSIP object

dist = pd.SIP

pd Object reference.

dist A SIP.

Returns the SIPõs value array.

39 .prettyPlot ð setup chart plot data

.prettyPlot(minbins)

minbins Minimum number of bins (bars)

Calculates the plot parameters using minbins to
decide on the mar ker values and interval . Returns

TRUE if it succeeds.

40 .plotParams ð setup chart plot data

.plotParabs(mint)

mint Value marker interval. Optional, uses
deltaV if mint is missing.

Calculates the plot parameters using mint as the

marker interval. Returns TRUE if it succeeds.

John Marc Thibault

36

phCha rt: SIP Chart Object

Workbook: exPhChart.xlsm

The phChart object holds the information and the
functions needed to make a percentile+histogram

chart . It uses three overlapping instances of

Canvas to do it:

Canvas chart name Function

base_Plot Histogram an d percentile

curve

base_Grid Grid lines

base_Cover Protects the contents (the

plan is that in a future rev

it will also catch mouse
actions)

41 .Setup ð define the chart space

. setup sh, id, tl, w, h

sh Sheet name.

id Base chart name

tl Top left corner ce ll

w Width in points

h Height in points

Sets up the three Canvas instances: cvPlot, cvGrid,

and cvCover. If the underlying charts already exist,
the current instances are first deleted.

phChart: SIP Chart Object

37

42 .draw ð draw the SIP chart

.draw(sip)

sip An instance of SmpSIP

Draws the grid, histogram and percentile curve
using the data in sip .

43 .update ð update the SIP chart

.update(sip)

sip An instance of SmpSIP

Draws the histogram and percentile curve over the

existing grid using the data in sip . This assumes

the number of bars h as not changed.

44 .plotParameters ð Setup the plot data

.plotParameters(sip)

sip An instance of SmpSIP

Sets up the data used to plot the grid, histogram

and percentile curve.

45 .drawGrid ð Plot the grid lines only

Plots the gridlines on the chart.

46 .drawHist ð Plot the SIP only

Plots the histogram and percentile curve.

John Marc Thibault

38

SmpSIPchart: Chart Presentation

Workbook: exPhChart.xlsm

With this release, this module has only the
sdDrawS ip () function that makes the format of

histogram+percentiles characteristic chart I lik e

most. When something Iõm writing says, òletõs look
at the SIP, ó this is what you see. Itõs the format

used by DistShaper.

Eventually, this module will replace and extend all
the functions in module SmpChart.

It makes use of the new set of objects phChart ,

SmpSIP, and Canvas.

47 sdDrawSip ð Draw a SIP Chart

sdDrawSip(SIP , minbins, shtid, chtid,

tlc, w, h)

SIP A SIP.

minbins Minimum number of bins (bars).

shtid Sheet name.

chtid Chart base name.

tlc The top left corner cell of the chart

w, h The width and hei ght of the chart

Draws a chart at the given location on the named

sheet. The chart includes both histogram bars and

the percentile curve for the provided SIP.

Returns a string with the chart base name.

=sd Draw Sip(out Sip ,8,"Show"," Cht A"," C10",

300,250)

SmpSIPchart: Chart Presentation

39

Makes a chart 300 points wide by 250 points high ,

positioned over cell C10 , on the sheet named
òShowó.

The histogram will have at least 8 bars. The exact

number will be decided by an algorithm that
attempts to assign reasonable values to the

horizontal axis labels.

John Marc Thibault

40

SmpSparkScat: Sparkline Scatter Plot

Workbook: exSparkScat.xlsm

This module will work stand -alone. The rest of
SDXL is not needed.

48 sdSparkScat ð Draw a sparkline

Scatterplot

sdSparkScat(sheetId, ñr angeò, np, vx, vy)

sheetId Sheet to draw on.

òrangeó Cell or cell range to draw on. Must be a

string, e.g. òC3:D4ó.

np Maximum n umber of pairs to plot or
zero to clear the chart .

vx X-axis values.

vy Y-axis values.

Draws a scatter plot over the indicated range given

the X -axis and Y -axis SIPs. The m aximum number

of points to be plotted is np ; if the number of
samples in either SIP is smaller, only that many

points will be plotted. The range string is used as

the chart name.

If np=0, delete the chart.

SmpChart: Plotting

41

SmpChart : Plotting

Workbook: exChart.xlsm

To use one of these functions, first create a chart
positioned on the sheet where you want it (Alt -F1

works nicely).

Give the chart a meaningful name (Chart Tools |
Layout | Chart Name). Itõs probably a good idea to

also give the sheet a meaningful name. Call th e

desired function using the sheet Id and chart Id for
the chart you set up.

The chart functions just plot the lines and dots;

except for turning off legends and positioning the

axes, they donõt do anything about formatting and
layout. You can adjust that to your taste and the

changes you make, other than series properties,

will probably persist with the workbook.

49 ppChart ð Percentile curves

ppChart(shtid, chtid, size, chmin, chmax,

comp, _

dist, é)

shtid Sheet name

chtid Chart name

size The interval betwee n markers on the
value axis

chmin Chart minimum

chmax Chart maximum

comp True for complementary probabilities
(more -than rather than less -than)

dist A SIP.

Draws one or more percentile curves on the
designated chart.

John Marc Thibault

42

=ppChart("charts","Compare",1,0,20, _

FALSE, ColArray,Dist4,Dist6a)

50 pmChart, ppmChart ð Percentile with
marker lines

pmChart(shtid, chtid, size, chmin, _

chmax, comp, dist, perc)

shtid Sheet name

chtid Chart name

size The interval between markers on the

value axis

chmin Chart minimum

chmax Chart maximum

comp True for complementary probabilities

(more -than rather than less -than)

dist A SIP

perc A percentile value

Draws a percentile curve with marker lines joining

percentile to valu e on the designated chart. The
pmChart() version plots lines bet ween the axis

markers. The ppmChart() version plots each

sample against its rank .

SmpChart: Plott ing

43

=ppmchart("Manager","timeDist",28, _

distMin(PlanFinish),distmax(PlanFinish), _

FALSE,PlanFinish,B4)

51 hg#Chart ðhistogram

hg#Chart(shtid, chtid, dist , minbins)

shtid Sheet n ame

chtid Chart name

dist A SIP

minbins Optional. Least number of bars. Default

= 8

Draws a histogram for the given dist. Excel doesnõt

have a good way of producing a histogram (which

is not a column chart), so we have to make do with
what we can arrange. Here are two versions.

John Marc Thibault

44

=hg1Chart("charts","Hist",Dist1 ,15)

=hg2chart("charts","Profile",Dist 2, 10)

52 yChart ð Simple vector plot

yChart(shtid, chtid, dist)

shtid Sheet name

chtid Chart name

dist A SIP

Basic plot of one SIP.

SmpChart: Plotting

45

=yChart("charts", "Simplexy", Dist5a)

53 scatChart ð Scatter Plot

scatChart(shtid, chtid, dist, dist)

shtid Sheet name

chtid Chart name

dist A SIP

Make a scatter plot from two data sets .

John Marc Thibault

46

=scatChart("charts", "Scatter", HAP, PY)

(The correlation coefficient for these two is .008)

54 Get PlotData ð Get the data to build a

chart

{ =getPlotData(dist, bsz) }

dist A SIP

bsz Histogram bin size (marker interval)

Returns a 4 -column array of data that can be used

as the data series for a chart. The columns are the
bins (x -values), cumulative frequen cy, cumulative

probability, and histogram probability.

SmpChart: Plotting

47

To make a proper histogram, the markers should
be offset so that the histogram bars are between

the markers. That is, bar(i) should be between

Xvalue(i -1) and Xvalue(i).

John Marc Thibault

48

SmpMath : Array Math

Workbo ok: exMath.xlsm

55 Array Math with SIPs

These functions do element -by-element operations

on one or more SIPs. Theyõre the array equivalent

of the Excel/VBA scalar functions and operators.

sdCount(dist) number of samples

sdNeg(dist) 0 - a

sdComp(dist) 1 - a

sdAbs(dist) a<0 ? ïa : a

sdSum(dist) Sum of samples

sdLog10(dist) Log base 10

sdExp10(dist) 10^a

sdAverage(dist) sum/count

sdAdd(dist , é) a+b+c+é

sdAddA(dist()) add up an array

of dists

sdSub(dist , dist) a- b

sdMul(dist , é) a*b*c*é

sdDiv(dist , dist) a/c

sdMax(dist , é) a>b ? a : b

sdMin(dist ,é) a<b ? a : b

sdDiff(dist, dist) abs(a - b)

dist A SIP. All but the first argument can
also be a scalar.

These functions do the array math corresponding

to their names and return SIPs as column arrays.

The first argument determines the size of the
result.

SmpMath: Array Math

49

sdAddA() is different in that it expects a column

array of SIPs.

sdSub() and sdDiv() will accept a scalar first

argument, in which case the second argument sets

the size of the result.

sdMin() and sdMax() will also work on a single SIP,

returning the scalar minimum or maximum.

Examples:

=toXml(sdMax(sdAdd(task1,task2),task3)

=to CSV(sdAdd(task1, task2, task3, task4))

56 Array Comparison

These function s do element by element comparison

of two SIPs and return binary column arra ys. Two
values within Fuzz of each other are considered

equal in this set of functions.

sdEq(dist, dist) a = b

sdGt(dist, dist) a > b

sdLt(dist, dist) a < b

sdNeq(dist, dist) a <> b

sdNgt(dist, dist) a <= b

sdNlt(dist, dist) a >= b

dist A SIP. All b ut the first argument can

also be a scalar.

57 sdIIf ð Conditional Value

sdIIf(T,dist1,dist2)

dist1,dist2 A SIP

T A boolean SIP

Returns a column array where each element is
chosen from one of two provided SIPs depending

on the Boolean value of a third ð the a rray version

John Marc Thibault

50

of VBAõs IIf function. This can be used for gating

decisions and simple event probabilities.

For each result element, if the element in T is True,

the result is the elem ent taken from dist 1;

otherwise itõs the element taken from dist 2.

58 sdEva l ð Excel Function on SIPs

sdEval(func, dist, dist, é)

func A string holding a function name

dist A SIP

Returns the function applied element by element
across the dists.

The result count will be the count of the biggest

dist.

sdEval(ñSUMò, Dist1, Dist2)

is equivalent to

sdAdd(Dist1, Dist2)

Contributed by Paul Edge.

SmpOrd: Order Management

51

SmpOrd : Order Management

Workbook: exOrd.xlsm

This module provides order -related sorting and
permuting functions .

59 RankOrder ð Rank Order of an array

rankOrder(dist)

dist A SIP.

Return s the ra nk order of a SIP as a Long column
array .

The returned array is a permutation index with

values 1 to n with no gaps and no duplicates.
Using it to permute the sorted version of the

argument array will restore the array to its original

order . rankOrder und oes sortIndex.

60 SortIndex ð Sort order of an array

sortIndex(dist)

dist A SIP.

Returns a Long column array . The returned array

is a permutation index with values 1 to n with no
gaps and no duplicates. Using it to permute the

argument array will sort that ar ray into ascending

order.

61 Permute ð permute an array

permute(dist , P)

dist A SIP.

P A column array with values between 1

and UBound(dist)

John Marc Thibault

52

Return s a column array reordered by an index. The

size of the result is determined by the size of the
permutation ind ex P. Where V is the value array of

dist , each element R(i) of the result will be taken as

 R(i) = V(P(i))

62 boolProb ð Boolean SIP

boolProb(size, prob, first)

size size of array

prob probability = fraction of ones

first optional 1 or 0. Default = 1

 Returns an array of ones and zeros as a boolean

SIP expressing a simple probability. The elements
of the array are a block of 1s and a block of 0s;

starting with a block of first . The number of 1s is

calculated as prob * size .

This is intended to be used as a fi lter or switch

based on a stochastic event. Use it with sdIIf() to

switch between two SIPs or to conditionally apply a

SIP.

63 sequence ð index a range

sequence(n, m)

n, m An integer

Returns a column array with the integers from n to

m inclusive, in order.

64 countTo ð Count 1 to n

countTo(n)

n An integer

Returns a column array with the integers 1 to n in

order. Semantic sugar for sequence(1,n) .

SmpOrd: Order Management

53

65 sortToRank ð get rank order from sort

order

sortToRank(a)

a An array with dimension (1 to n , 1 to 1)

sortToRank con verts index vectors from sort order
to rank order and vice -versa. This is an internal

function unlikely to be of value in an Excel

formula.

66 sdSort ð Sort Ascending

sdSort(dist)

dist A SIP

sdSort sorts the given array into ascending order.
Itõs syntactic sugar for

permute(a, sortIndex(a))

67 sdMatchRO ð Match Rank Order

sdMatchRO(dist1, dist2)

dist1, dist2 A SIP

Returns a permutation index that, if applied to
dist2 , would give dist2 the same rank order as

John Marc Thibault

54

dist1 . This is how you manufacture correlation for

demos.

68 sdCorrel ð Coefficient of Correlation

sdCorrel(dist1, dist2)

dist1, dist2 A SIP

Uses the Excel function CORREL to return the

correlation between two SIPs.

69 sdPercentRank ð PercentRank

sd PercentRank (dist , v)

dist A SIP

v A value

Uses the Excel function PERCENTRANK to return
the percentile corresponding to a value v in a SIP.

70 sdPercentile ð Percentile

sdPercentile (dist, p)

dist A SIP

p a percentage

Uses the Excel function PERCENTILE to return the

value corresponding to the pth p ercentile of a SIP.

71 sdMedi an ð Median

sdMedian (dist)

dist A SIP

Uses the Excel function MEDIAN to return the

median of a SIP.

SmpOrd: Order Management

55

72 sdRotate ð Rotate Samples

sdRotate(n, dist)

n An integer

dist a SIP

Returns dist permuted so that its elements are

moved by n positions in the direction of increasing

index. Item 1 is moved to position n+1. A negative
n rotates in the direction of decreasing index.

73 sdCat ð Concatenate SIPs

sdCat(dist, dist, é)

dist A SIP

Returns a column array with the dists
concatenated.

This provides the basis for creating a dist that

handles stochastic alternatives. The counts of the
different dists correspond to their probability or

weight in the combined dist. E.g.

toXml(sdResize(1000, sdCat(D1, D2,

D3)),òCombineò)

Creates a SmpDst string with count=1000 from the
mix of D1, D2, and D3.

74 sdForceRo ð Force Rank Order

sdForceRo(dist, ro)

dist A SIP

ro A permutation index

Syntactic sugar for

permute(sdSort(dist), ro)

John Marc Thibault

56

75 sdMerge ð Merge Dists

sdMerge(selector, dist, dist, é)

dist A SIP

selector An array of integers , may be enco ded as
a SmpDst

This generalizes sdIIf() from two options to many. It

returns a column array the same size as selector .
The ith element of the result is taken from the ith

element of one of the dists. The value of the ith

element of the selector determines which dist is

used. If we number the dists d(1), d(2), é then

result(i) = d (selector(i)) (i)

All the dists must have a sample count equal to or

greater than the number of elements in the

selector.

The values in the selector must be integers 1

thro ugh n, where n is the number of SIPs.

Thanks to Jacques Rioux for the idea and the
algorithm.

76 sdPtoX ð Probabilities to Indexes

sdPtoX(n, p, p, é)

n Number of samples

p A probability

Returns a column array of integers suitable as a

selector for sdMerge() . The result size will be n

samples. For each p, there will be p*n integers
between 1 and the number of p arguments. The

result is sorted in ascending sequence, so it should

be permuted before being used.

If the probabilities donõt add up to 1, the last one

will be adjusted so that they do.

SmpResize: SIP Sizing

57

SmpResize : SIP Sizing

Workbook: exResize.xlsm

These functions can be used to change the number
of samples in a SIP while conserving the shape

attributes . This is preferable to simulating with

differently -sized SIPs and recycling the smaller
ones.

sdResize() is superior to sdResample() for

conserving the SIPõs shape through the conversion.
sdResample does the conventional ôbootsrap.õ

77 sdResize ð Resize a SIP

sdResize(n, dist , res)

n The number of samples in the result SIP

dist The source SIP.

 res Optional Resolution. Sample values will

be rounded to an integer multiple of

this.

Returns a SIP in sorted order as a column array .

This can increase (interpolate) or decrease

(decimate) the number of samples while preserving

the shape of the source SIP. The algorithm is
deterministic ð repeating a call will repeat the

result.

The result includes the source minimum and
maximum.

This function should only be used when

interpolation is a valid operation ð when itõs safe to
assume t hat the ôunderlying distributionõ includes

values between the values in the source.

John Marc Thibault

58

78 sdResample ð Resample a SIP

sdResample(n, dist)

n The number of samples in the result SIP

dist The source SIP.

Returns a SIP in random order as a column array .

This can in crease (up -sample) or decrease (down -

sample) the number of samples. The result is
sampled with replacement from the source SIP.

For more control, use permute() .

79 sdReselect ð Resizing Selector Index

sdReselect(n, m)

n number of samples in the source SIP

m number of samples in the result SIP

This function is intended to be used for resizing

entangled SIPs without changing their
relationships. This is accomplished by permuting

all of the SIPs with the same permutation index.

sdReselect returns a permutatio n index that, when
used with a dist of length n, will resize it to a dist

of length m. The algorithm is deterministic. It

either adds or removes elements evenly spaced

across the source array. It enables a predictable
form of taking m samples from an n-sam ple SIP.

If a more random result is wanted, the index

should be randomly permuted before being used
(without further change) on the SIPs.

E.g.

px = sdReselect(1000,1500)

Dist1a = permute(D ist 1, px)

Dist2a = permute(Dist2, px)

Dist1a and Dist2a will be 150 0-sample versions of

the originals with their relationships preserved.

SmpResize: SIP Sizing

59

This is Sam Savage õs HAP/PY SIPs up -sampled

from 1000 samples to 1700 samples.

John Marc Thibault

60

SmpRand : Random Numbers

Workbook: exRand.xlsm

The SmpRand module provides a variety of random
number fu nctions using the PRNG that defines

randomLong() and randomDouble(), using its

default state. The current PRNG is the Mersenne
Twister in module Mersenne. If the state needs to

be managed, use the functions in the Mersenne

module itself .

80 rIndex ð Random in dex

rIndex(n)

n an integer

Returns a column array containing the integers 1

to n in random order.

81 rInt ð Random Integer Vector

rInt(n, min, max)

n The number of samples .

min, max The limits of the result

Returns a column array of n Longs between min
and max inclusive.

82 rUnif ð Uniform Random SIP

rUnif(n, min, max)

n Number of samples

min Optional minimum, default = 0

max Optional maximum, default = 1

SmpRand: Random Numbers

61

Returns n values in a column array . Each sample

is drawn from a uniform distribution where min <
sample < max.

83 shuffle ð Random Permutation

shuffle(dist)

dist The source SIP.

Returns a random permutation of dist . For more
control, use permute() .

84 rSum ð Irwin -Hall Distributions

rSum(n, med, scale, rank)

n Number of samples

med Median value

scale Scale factor

ran k Number of uniform values to sum

Returns n random values in a column array. Each

value is the sum of rank uniform random numbers .
The center of the resulting SIP will be at med and

the range will be between med ð scale and med +
scale .

A rank of 2 gives a triangular distribution. A rank
of 12 gives a close approximation to a Gaussian

distribution .

85 rTriangle ð Triangular Distribution

rTriangle(n, min, mode, max)

n Number of samples

min Minimum value

mode Value at the triangle peak

John Marc Thibault

62

max Maximum value

Return s n values in a column array. Each sample
is drawn from a triangular distribution between

min and max with mode mode .

Mersenne: Mersenne Tw ister

63

Mersenne: Mersenne Twister

Workbook: exRand.xlsm

This module implements a Mersenne Twister
pseudo random number generator and some

suppo rting functions. It implements randomLong()

and randomDouble() functions used by the default
random number functions in SmpRand. The

Mersenne Twister is interesting because it has an

insanely long period.

The Mersenne generator state is defined as a data

type and the key functions take an instance of this

type as an argument. This allows for independent

management of the generator state.

The state variable type is defined as

Public Type MersenneState

 vector(0 To 623) As Long 'State

vector

 index As Long 'State

index

 ttl As Long 'Turns to

Live

 seed As Long 'Original

seed

End Type

ttl is a counter that can be used to limit the

number of samples that may be taken from a
particular stream. Itõs decremented with each

number generated . A couple of the functions reset

the generator state when ttl is zero.

seed is a copy of the seed used to create the

starting state.

John Marc Thibault

64

86 randomDouble ð Random Fraction

randomDouble()

Returns a random positive fraction as a D ouble.

87 randomLong ð Random Integer

randomLong()

Returns a random positive Long.

88 makeMersenne ð Set up a state variable

dim mt as MersenneState

mt = makeMersenne(seed)

seed A Long integer

Returns a MersenneState unique to the provided

seed. In theory, the s eed can be used as a stream

index.

89 nextMersenne ð Get the next random

number

nextMersenne(mt)

mt Instance of MersenneState.

The state will be updated in place as a side -effect.
Returns a Long integer and steps the given state.

90 setMersenneDef ð Set the def ault state

setMersenneDef seed

seed A number

Sets the default Mersenne state. The Mersenne

module provides a default state variable to be used

by functions that donõt need managed states. It will
be automatically initialized if needed.

Mersenne: Mersenne Twister

65

This canõt be used from Excel and has to be in

code.

91 mersenneRandomize ð reset default

Mersenne state

mersenneRandomize

Sets up a new default Mersenne state using date

and time as the seed.

92 mersenneInt ð One Mersenne Integer

mersenneInt()

Returns a random positive Long using the default

state.

93 mUnif ð Generate uniform random
numbers

mUnif(n, min, max)

n The count of numbers to be generated

min, max Optional. The limits of the numbers
returned

i.e. min < x < max. The defaults are 0

and 1.

Returns a column array of real numbers sampled

from a Mersenne uniform distribution using the

default state .

94 mIndex ð Generate a random
permutation index

mIndex(n)

n The count of numbers to be generated

Returns a column array of integers suitable for
permuting a SIP using the default state .

John Marc Thibault

66

The returned array consists of the integers between

1 and n with no gaps or repetitions, in random
order.

SmpU: Utilities

67

SmpU : Utilities

Workbook: exU.xlsm

95 bounds ð bounds of an array

bounds(a r)

ar An array

Returns a 2D matrix with one row for each

dimension in ar . Each r ow has the Lbound and the

Ubound for the corresponding dimension.

96 dims ðdimensions of an array

dims(ar)

ar An array

Returns an array holding the sizes of each

dimension of an array.

For each dimension the size is Ubound ð Lbound

+1.

Returns Null if itõs a scalar.

97 ndims ð number of dimensions

ndims(ar)

Returns the number of dimensions of an array, 0 if

itõs a scalar.

98 ceilL ð ceiling as Long

ceilL(n)

n a number

Returns the Long integer higher than or equal to

the argument .

John Marc Thibault

68

99 floorL ð floor as long

floorL(n)

n A number

Returns the Long integer lower than or equal to the
argument.

100 flatten ð force to one -dimensional array

flatten(x)

Unravels whatever x is into a one -dimensional
array .

101 getFormula ð get the formula from a cell

getFormula(cell)

cell A cell reference

Returns the formula in a cell as a string .

102 getTemp, putTemp ðTemporary Store

Maintains data in a Dictionary set up as a

temporary store accessible from Excel.

putTemp(key, data) óput data,

returns the key

getTemp(key) óget data

key A string

data Any data

This creates a place for stashing arrays without

using a cell range.

Look out for race conditions; the putTemp formula
cell might not be evaluated before the getTemp

formula cell. The best thing is, in the getTemp

formula, refer to the cell containing th e putTemp

SmpU: Utilities

69

formula. This evaluates as the key and the cell

reference tells Excel to evaluate it first.

103 keyAttr ð get an attribute from a string

keyAttr(text, key)

Returns the attribute from a key = òattribute ó

pattern in the supplied string . The string doe snõt

have to be valid XML.

104 times ð repeated value

times(n, m)

Returns an array of dimension (n,1) with all values

= m. The argument can be any variable type.

105 toColumn ð Force to column array

toColumn(X)

Converts a numeric value, array or range into a

column array.

If the argument is a string, it raises an error.

106 LtoD ð Long to Double*

LtoD(aLong)

Converts aLong to a Double as if it were a 32 -bit

unsigned Integer. The sign of the argument is used

as the 32 nd bit.

107 DtoL ð Double or Decimal to Long*

DtoL(d)

d A positive Double or Decimal integer.

Converts 32 bits from d to a Long. The 32 nd bit is

used to set the sign of the result.

John Marc Thibault

70

*These two functions are used to preserve the bits

for bitwise operations. VBA doesnõt have bitwise
shift operations, so the vari able must be converted

to Double for multiplying and dividing instead.

Then it has to be converted back to a Long for
bitwise AND, OR, etc. all the while using the sign

bit as the top data bit. See the Mersenne functions

for examples.

SmpCar: Column Arrays

71

SmpCar: Column Array s

Workbook: exCar.xlsm

This module has a bunch of service functions for
manipulating column arrays. Itõs used by the rest

of the kit, especially SmpMath. The arguments

must be column arrays ð the functions donõt do
any checking and will fail if the argumen ts are not

dimensioned (1 to n, 1 to 1).

108 Functions of one array

These functions return a column array whose
elements are a function of the corresponding

argument (ar) elements (a).

carNeg(ar) 0 ï a

carComp(ar) 1 ï a

carAbs(ar) abs(a)

carLog(ar) log e(a)

ca rLog10(ar) log 10(a)

carExp(ar) ea

carExp10(ar) 10a

carCum(ar) sum(a(1 to i))

These are two exception s that donõt return an

array but a scalar result.

carSum(ar) Sum of the elements in ar

carItem(ar, n) The n th item in ar, with

rewind.

John Marc Thibault

72

109 Functions of two ar rays

The size of the result is normally the size of the
first array argument. The other will be rewound if

necessary to supply data.

carAdd(ar1, ar2) a1 + a2

carSub(ar1, ar2) a1 ï a2

carMul(ar1, ar2) a1 * a2

carDiv(ar1, ar2) a1 / a2

carMax(ar1, ar2) max(a1 , a2)

carMin(ar1, ar2) min(a1, a2)

carPow(ar1, ar2) a1 ^ a2

carDiff(ar1, ar2) abs(a1 ï a2)

carIIf() uses a binary array (0/1) to choose between

the elements of two data arrays.

carIIf(tr, ar1, ar2) IIf(t, a1, a2)

110 Boolean Functions

These functions return a boolean array

(True / False).

carNot(ar) Not a

carEq(ar1, ar2) a1 = a2

carNeq(ar1, ar2) a1 <> a2

carLt(ar1, ar2) a1 < a2

carNlt(ar1, ar2) a1 >= a2

carGt(ar1, ar2) a1 > a2

carNgt(ar1, ar2) a1 <= a2

SmpCar: Column Arrays

73

111 Boolean Conversions

These functions handle the conversion b etween
Excelõs Boolean type and the binary equivalent.

carToBool(ar) convert 1/0 to

True/False

carToBin(ar) convert True/False to

1/0

John Marc Thibault

74

LongStack Object

LongStack provides a simple stack object

containing elements of type Long.

An example:

dim s as new Lon gStack

s.reset 100 'sets the size of the stack

s.push a 'pushes a long onto it

If Not s.isEmpty then

 a = s.pull ' pulls a long from it

End If

112 .count ð Number of elements on stack

.count

Returns the number of elements on the stack as a

Long.

113 .isEmpty ð Test for empty stack

.isEmpty

Returns a Boolean True if the stack is empty.

114 .pull ð Take top element from stack

.pull

Returns and removes a Long from the top of the
stack. Returns Null if the stack is empty.

LongStack Object

75

115 .push ð Put an element on top of stack.

.push v

v a number of type Long

Pushes v onto the top of the stack and returns the
count of items on the stack as a Long. Returns

Null if the stack is full.

116 .reset ð Set the stack size

.reset n

n a number

Sets the stack size to n elements. Any previous

contents are lost.

John Marc Thibault

76

SmpIO : File Transfers

Workbook: exIO.xlsm

117 fromFile ð Get XML from a file

fromFile(path, n)

path Absolute or relative path

n Optional. Name string or index into

multiple XML formatted SIPs in a file.

Default = 1

Returns a string containing a SIP read from a file.

If n is a string, the function looks for a SIP whose

name attribute is that string (case sensitive). If itõs
a number, the function looks for the nth SIP in the

file. If it canõt find the requested SIP, it returns the

string òNot Foundó.

If there are multiple SIPs in the file, each one must
start on a new line. Put this on a button or in code

that doesnõt get run with every recalculation.

118 toFile ð Write XML to a file

toFile (path, dstr, appending)

path Absolute or relative path

dstr SIP XML string

appending TRUE to append rather than
overwrite

Writes a SIP out to a file. Returns TRUE if it

succeeded. Put this on a button or in code that

doesnõt get run with every recalculation.

SmpRad64: Base64 encode/decode

77

SmpRad64: Base64 encode/decode

These functions convert betw een Base64 encoded

strings and column arrays.

There are two aspects to the encoding:

compression and translation.

Translation breaks the compressed data, presented
as an array of integers, into six -bit chunks and

translates each chunk into an ASCII byte u sing a

variation on the Base64 standard. The resulting
text strings become the encoded element of the

XML string.

To compress the data into integers for translation,

the conversion between a floating -point sample
value and the integer, with some details le ft out, is :

n = (2^b - 1)*(v - min)/(max - min)

where n is the integer result, v is the value and b is

the number of bits of each integer to encode. In
essence, the values are scaled and offset so that

they all fit in the range between 0 and 2^b -1. For

decoding , the b, min and max attributes must be

preserved and used to get the values back.

119 R64encode ð Encode Base64 string

R64encode(ar , n, bpw)

ar column array to be encoded.

n number of words to be encoded,
padded with zeros if necessary

bpw bits per word

Returns an encoded string.

John Marc Thibault

78

120 R64decode ð Decode Base64 string

R64decode(x As String, n, bpw)

x string to be decoded.

n number of words to be decoded, padded
with zeros if necessary

bpw bits per word

Returns a column array.

New and Changed in Version 1.0

79

New and Changed in Version 1.0

Star ted moving the terminology to use ôSIPõ instead

of ôdistõ.

Canvas : An object that p rovides low level functions

that use Excelõs Chart and Shapes objects directly.

SmpSIP: An object that does things with a SIP.

phChart: An object that helps to make a histog ram

and percentile curve chart.

sdDrawSip: Finally got the SIP histogram and
percentile curve graphic the way I like it using the

new charting classes.

sdSparkScat: Added a Sparkline styled scatter plot.

John Marc Thibault

80

About the Author

John Marc Thibault is an indepen dent consultant

with a twenty -year practice focused on technical
analysis, design and planning. His clients have

included a large fraction of the Canadian federal

government's departments and a variety of high -
tech companies.

His earlier experience includ es over a decade of

marketing and technology roles at Xerox, and
senior management in two high -tech upstarts . He

has a physics degree from Loyola College in

Montreal.

Author of the 'Art of the Plan' blog at goodplan.ca,
he's developing software and operat ional

techniques to fix the Flaw of Averages in project

planning, and to correct the systemic errors that
result in high -risk plans and unattainable targets.

